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Two-Dimensional Hyperbolic Heat Conduction
in an Orthotropic Medium

Woo-Seung Kim* and Kwan-Soo Lee*
(Received June 7. 1994)

Many natural and man-made materials have the properties of varying thermal conductivity
with directions. In the present work, the very short-time temperature response characteristics are
examined by using a hyperbolic heat conduction model in an orthotropic medium when an

axially symmetric heat flux with a temporal profile, which is either continuous or activated for
period Llt, is applied. The ratio of the thermal conductivities is one of the important parameters

to be considered. The non-Fourier temperature responses in the orthotropic medium are

compared with those in the isotropic case. The Fourier's results are also included and compared

with the non-Fowrier's results.
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1. Introduction

The hyperbolic heat conduction equation
accounts for the thermal inertia of a material
since a short time must pass prior to the com­

mencement of heat flow. While the heat conduc­
tion equation based on Fourier's law is appropri­
ate for most engineering situations, it fails to

adequately predict temperatures in situations
which involve very short times, high heat fluxes
and cryogenic temperatures. For these situations,

the following hyperbolic constitutive law has
been proposed,

(I)

which is actually a linearized version of a general

theory originally derived by Maxwell(l867). The
salient feature of the thermal wave model lies in
the involvement of the thermal relaxation time
r which is essentially a measure of the thermal
communication time between points in the heated
medium. Eq. (I) can be reduced to Fourier's

law as the relaxation time r becomes zero. A
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typical value of the relaxation time for metals has
been reported to be on the order of 10- JJ

second(Gembarovic and Majernik, 1987). Recent
work by Kaminski( 1990) on nonhomogeneous

inner structure materials revealed values of r on
the order of fractions of a minute.

Peshkov(l944) was the earliest investigator to

detect experimentally thermal waves of 19 m/sec
using the superfluid liquid helium at 1.4K. Since
then, the wave nature of the heat propagation has

been the subject of numerous investigations.
Baumeister and Hamill( 1969) determined the

effect of the propagation velocity of heat on the
temperature and heat flux distribution in a semi­
infinite body due to a step change of surface
temperature. Frankel et al.( 1987) presented a

general one-dimensional temperature and heat
flux formulation for hyperbolic heat conduction

in a composite medium. Several studies(Glass et
aI., 1986, Glass et aI., 1985, Glass et aI., 1990)
have been conducted numerically to accommo­
date the nonlinearities resulting from the

temperature-dependent thermal conductivity and
the radiation effects. Recently, Tzou(l989, 1990)
investigated the thermal shock wave phenomena
due to the thermal energy accumulation in a
preferential direction using the wave theory for
heat conduction.
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(3)

(2)

(4)

(5)

(7)A

following hyperbolic heat conduction equation
governing the temperature distribution in an
orthotropic medium,

_L..JL(raT)+~ aZT_
r ar ar kr azz

--2 aZT +--'-lZ'.
-- ar atZ ar at

q.=qof(t)[A +(1- A) ~:]e-~

at z=O (6)

where qo is a scaling factor which corresponds to
the maximum incident flux for the Gaussian

source. The parameter d is a characteristic radial
dimension and f( t) represents the temporal pro­

file of the heat flux which is dimensionless. The
parameter A represents the fraction of the flux

that contains the Gaussian mode and is written as

We assume that the region is initially in eq­

uilibrium at temperature To and the surface of the
medium is irradiated by a source with specified

spatial and temporal profiles. The heat flux to the
surface of the medium is taken as

TEMoo
TEMoo + TEMo1

where A falls in the range O:S:A:"~ I. For situa­
tions which involve laser beam irradiation of a

surface, it is appropriate to consider the spatial
profile of the impinging beam in a heat conduc­

tion analysis. For example, most pulsed solid
state lasers operate in the lowest-order spatial

mode which is known as TEMoo(Transverse elec­
tromagnetic) or Gaussian mode. Many high

power COz lasers and solid state lasers generally
produce a complicated mixtures of the two

lowest-order spatial modes(Gregson and Sanders,

1974) TEMoo and TEMo1 , the latter often referred
to as the doughnut mode. The Gaussian source

corresponds to the case A = I and is shown in
Fig. I(b) along with the characteristic radial

dimension d. In this case the maximum irradian­
ce occurs at the center of the profile and is gener­
ally the reason why the Gaussian source is often
preferred for most industrial materials processing
applications involving highly reflective surfaces.
The doughnut source shown in Fig. I(a) corre­

sponds to the case A =0.

r~+q =-k aT.at r r ar
aq. _ aT

r7ft+ q.- - k. az

where r is the thermal relaxation time, and kr and
k. are the radial and axial thermal conductivities,
respt:ctively. Eliminating the heat flux compo­

nents between Eq. (2), and (3) and (4) gives the

We: consider an axisymmetric orthotropic
medium in which two dimensional heat conduc­

tion and constant thermal properties prevail.
The two-dimensional heat conduction equation

with cylindrical symmetry is written as

From the works mentioned above, one can see
that si gnificant amount of research effort has been
devoted to the thermal wave propagation for an

isotropic medium. However, the results of such
analy~;es are not applicable to a non-isotropic

medium such as crystals, metals that have under­
gone l:1eavy cold pressing, heat shielding materials

for space vehicles, fiber reinforced structures, and
many others(Ozisik, 1993).

As a continuation of the previous work(Kim et

aI., 1990), the present study is concerned with the
temptTature response in an orthotropic, semi­

infinite medium due to axisymmetric surface
sourc<~s which are either continuous or single

pulse~; activated for a small period Llt. The spatial

profile of the pulses may be either Gaussian,

doughnut, or a mixture of Gaussian and dough­
nut modes. The material properties are assumed

to be constant, and radiative and convective
losses from the surface are also assumed to be

negligible.

2. Problem Formulation

whefi~ r is the radial coordinate, z is the axial
coordinate, qr and q. are the radial and axial heat
flux components, respectively, p is the density,

and Cp is the specific heat. The modified non­
Fourier heat flux laws in an axisymmetric orth­
otropic medium for the radial and axial heat flux

components qr and q. are, respectively,
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[A+(l-A) ~:Je-;;~

at z=O (9)
T -> To as r, z -> CD ( 10)

fl_=o at r=O (II)ar
T=To (/tt=O (12)

aT =0 at t=O (13)at

at p=O (22)

at ~=O (23)

at ~=O (24)

For convenience In the subsequent analysis, the

following dimensionless quantities are

introduced.

(17)

(15)

( 16)

( 14)cr
p= 2Q'r

the dimensionless radial coordinate:

czr;--­
- 2Q'r

the dimensionless axial coordinate;

~_£L
- 2Q'r

the dimensionless time;

2Q'r
f1.= cd

the dimensionless reciprocal of d ; and

a2 e I ao a2 e ao a20
7iiT+-p' ap +E ar;2 =2a;f+ oe

inp>O,r;>O,~>O (19)

j1fL= ~-?'F(~)[A +( 1- A)f1.2p2]e-P2p2
or; E

at r; =0 (20)

0->0 as p, r; -> CD (21)

ao =0
op
0=0

J1fl.=0
a~

where the function FU;) represents the dimen­

sionless temporal profile of the boundary flux.

Solutions of this system for prescribed F(~) and

values of A are presented in the following equa­
tions.

e( ,,")=T(r,z,t)-To (18)
p, r;, ~ (jOQ'r / krc

the dimensionless temperature.

With dimensionless quantities, we obtain the

following system of equations

(8)

Z

(a) doughnut

where

z
(b) Gaussian

Fig. 1 Spatial profiles of laser sources

This source represents a situation in which the

maximum irradiance is not only reduced from

that of the Gaussian source but is concentrated in

a ring of doughnut shape. The doughnut source is

generally useful in situations where the concen­

trated ring of energy leads to better edge quality

in various cutting operations although it is more

difficult to focus than Gaussian source.

The governing Eq. (5) for an axisymmetric

orthotropic medium with the assumption of con­

stant properties can be rewritten as follows:

The boundary and initial conditions may be

expressed as
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8(/3, Tj, s)= l.:oe-Sff' ff(j3, Tj, ~')d~' (35)

to Eqs. (29)-(33) gives the following system for

the double transform

2~_~Jf±s2+_2s)8=0 In Tj>O (36)
dTj c

_rl~=, - [1_+ I]l1Y3J at Tj =0 (37)
dTj S C

t)--o 0 as Tj --0 co (38)

The solution to Eq. (36) subject to Eqs. (37) and

(38) gives

where the function g(f3) is defined by

g(j3)=1,:/e-I'zP"U/3p')dp'

Application of the Laplace transform

which gives

riff aff a2ff 2 -

C-aTj2 =2Jf+ a~2+ /3 8

inTj>O,~>O

rtil= -[2H(c)+ 8(~)] g(/3t
aTj ~ c

at Tj=O

(29)

(34)

(30)

(31 )

(32)

(33)

as Tj --0 eXl

at ~=O

at ~=O

ff--oO

ff=O

2-[=0at:
"

In order to solve Eg. (19) subject to Eqs. (21)

-(24) and (25) we introduce the following inte­

gral transform pair on the p-variable

Tmnsform:

3. Analysis

We examine the solution of the hyperbolic

system Eqs. (19) - (24) for several different types

of applied surface sources, including a continuous

Gaussian source, continuous doughnut source,

continuous mixed source, single pulse Gaussian

source, single pulse doughnut source and single

pulse mixed source. The solutions for the corre­

sponding parabolic(i. e. Fourier) system are listed

in the Appendix. Here, we follow the procedure

employed in the previous work( Kim et aJ.. 1990)

which dealt with an isotropic medium.

3.1 Continuous caussian source
In the case of a continuous Gaussian source f

U)=}{U), A= I, the dimensionless form of Eq.

(9) becomes

ff(j3, Tj, ~)= 1,:oP'U/3p') •

@(p', Tj, ~)dp'

Inversion:

(26)

(}(/3, Tj, s)=[2+ I] e-")"gJj3~
S WE

where

(39)

(40)

where ]o(/3p) is the zeroth order Bessel function

of tht: first kind. In order to transform the system

Egs. (19)-(24) we operate on these equations

with

(28)

Utilizing the inverse Laplace transform

-w"
the termfZ~_. appearing in Eq. (39) is inverted

ws
as

(42)
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The integral defined by Eq. (34) is determined as

(43)

Finally, the double inversion of Eq. (39) gives the
desired solution as

e(p, Tj, ~)= 2e!-~ C1(p, Tj, ~)H( ~- h)
+ v~ [:-'loe-" . Gl(P, Tj, tldt

'1
i £

(44)

where

(45)

we find the following dimensionless temperature

(47)

(46)at Tj=O

Following the solution procedure as outlined for

the continuous Gaussian source, with a careful

interpretation of the integral

[.:Op'3 e -!'2
P''jo(;3p')dp'

= 2>[1- :;2 ]e-!J'

3.2 Continuous doughnut source
The doughnut source depicted in Fig. I(a) has

a minimum that corresponds to zero heat flux at

the center. In this case fU)=HU). A=O and Eq.

(20) red uces to

ae [2H(~)+ o(~)] 2 2 _!,2p237;-= - --~-c~~P P e

and JoCtl is the modified Bessel function of the

first kind of order zero. The integrals in Eq. (45)

can be evaluated numerically(lMSL. 1989).

(48)

where

(49)

3.3 Continuous mixed source
The temperature response to the continuous

mixed source may be written as a combination of

the solutions given in Eqs. (44) and (48) as

e(p, Tj, ~)=2e~:'[AC1(p, Tj, ~)+(l-A)CAp, Tj, ~)]H(~- :L)
YC VC

+-jE'l:_'lc-ff'[AC1(p, Tj, ~')+( 1- A)Cz(p, Tj, ~')]d~'
';c

(50)

3.4 Single pulse Gaussian source
The temporal profile for a single pulse source

activated for a small time period Llt IS

f(t)=HU)- HU-Llt)

and Eq. (20) becomes

~~ = - [2{H(~) - H(~~ Ll~)} + o(~)

(51 )

_p2p2

-o(~-Ll~)]~at Tj=O (52)

In this situation the surface Tj =0 is irradiated

with a Gaussian source which is temporally

square having width Ll~. Although the real tem­

poral profile of a pulsed laser does not possess
such sharp discontinuities in time, the temporally

square profile remains a useful approximation for
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the mo~;t heat transfer analyses. The following
temperature response to a pulsed Gaussian source

is obtained from the solution procedure as previ­
ously outlined.

(53)

3.5 Single pulse doughnut source
For the case of a pulsed doughnut source. the

temperature profile is found to be

3.6 Single pulse mixed source
The temperature response to a pulsed mixed

B(p, Tj. ~)= D~ [Gz(p, Tj, ~)H(~~1i)- eMGz(p, Tj, ~-- ,j~)H( ~- ,j~-!E ) ]

I 1" -< ' ,~, I l<-J<· -<" ~, .~,+ jE. <.~}/ cn(p, Tj. ~ )dt; ----.;-E <.~;?/ cn(p. Tj, t; )dl; (54)

source is a combination of the temperature profile
given in Eq. (53) and (54).

B(p, Tj. ~)= 2e-:-[{AGl(p, Tj. ~)+(l-A)G2(P' Tj, ~)}H(~--l:-)
vE vE

-{AGt(p, Tj. ~-,j~)+(I-A)GAp, Tj. ~-,j~)}eJ<H( ~-,j~-v%-)J

++-1< ~ e-<'[AGt(p, Tj. n+(l-A)Gz(p, Tj. ~')]d~'
v E <'~7<

I 1"-J<-~ ~ e-<'[AG1(P. Tj, n+(I-A)GAp, Tj, ';')]de
v E <'~.f£

(55)

4. Results and Discussion

Numerical computations are performed to

examine the behavior of the temperature response
in an orthotropic. semi-infinite medium due to

axisymmetric surface source with a Gaussian
spatial profile.

Hen~. we present the temperature variations of
E= I considered in Kim et al.( 1990) in order to

examine the effects of the conductivity ratio on
the temperature distributions in an orthotropic

medium compared to the ones in an isotropic
medium. Three different values of the conductiv­

ity ratio, E=kj kr are chosen as E=O.I,
I(isotropic case). and 10 for comparison.

Figure 2 shows the surface temperature distri­
bution for the three different values of conductiv­
ity ratio of E = 0.1, I and 10 at dimensionless time
of ~=O.I due to a continuous Gaussian source. It

is shown that the temperature response across the
irradiated surface generally follows a Gaussian

profile. As shown in the figure. the temperature

rise at the center of the source. i. e., p= Tj =0, is
more pronounced for both hyperbolic and para­

bolic cases as the value of E decreases. The reason

follows from the fact that more heat flows along

the radial direction than along the axial direction

for the smaller values of E.

Figures. 3(a). 3(b) and 3(c) represent the varia­

tion of the temperature along the axis(p=O) due

to a continuous Gaussian surface source at

dimensionless times of ~ = 0.1 and 0.4. The tem­
perature distributions for both hyperbolic and

parabolic model are quite different from each
other. It is demonstrated that the parabolic model
predicts instantaneous energy propagation
through the material while the hyperbolic model
shows the wave nature of the energy propagation.

It shows that the thermal penetration depth for
both models is getting deeper for larger E value.

This is due to the fact that the energy propagates
more rapidly in the axial direction with increas­

ing value of E. As shown in the figure. the
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Fig. 3 (a) Variation of center temperature with the
axial distance 7J for a continuous surface
heat flux of Gaussian shape and c=O.1

(b) Variation of center temperature with the
axial distance for a continuous surface
heat flux of Gaussian shape and c = 1.0

(c) Variation of center temperature with the
axial distance 7J for a continuous surface
heat flux of Gaussian shape and c= 10.0
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Fig. 2 Temperature distribution for different values
of cat the surface, 7J =0, plotted as a function
of c the radial position, p for a continuous
surface heat flux of Gaussian shape at a given
time ';:=0.1

temperature rise at the center becomes more

severe with decreasing value of c at a given time.

Since hyperbolic model takes into account a

thermal inertia effect that accounts for the finite

time necessary for the onset of heat flow, a small

time must pass prior to the commencement of heat

flow. This fact explains why the most significant

difference between two models occur close to the

surface and the effect is more pronounced at a

smaller time.

The temperature variations along the axis due

to a temporally square Gaussian pulse at dimen­

sionless time of ~=0.7 and 1.2 are shown in Figs.

4(a), 4(b) and 4(c).

The pulse is activated for a period L1~=O.2.

Again, it is shown that the hyperbolic model

demonstrates the wave nature since at anyone

time there are points along the axis which have

experienced no temperature change in response to

the surface heat flux. A comparison of Figs. 4(a)

and 4(b) shows that the localized temperature rise

in hyperbolic model is more severe with decreas­

ing value of c. Figures 4(a) and 4(b) also show

that the temperature distributions for both models

are quite different from each other. However,

Figure 4(c) shows that the two models depict the

similar trends up to the axial distance considered

in this figure. This is due to the fact that the
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0Jl +---.L,---" "_c,.~ cc, C~ ~----,,--~.,---_
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non-Fourier effect is delayed with increasing

value of c since with a large value of the heat

propagation in the axial direction is faster

compared to the one with a small value of E.

For this case(E= 10) the wave front in the

hyperbolic temperature distribution will show up

at a point beyond the axial distance considered in

this figure.

Figures 5(a), 5(b) and 5(c) show the variation

of temperature with dimensionless time at selected

points along the 7/ axis due to a continuous

Gaussian source. A comparison of hyperbolic

temperature profiles with their parabolic counter­

parts reveals that the parabolic model predicts

instantaneous energy propagation while the

hyperbolic model shows discontinuous jumps in

temperature followed by a temperature rise which

is similar to that predicted by the parabolic

model. In Fig. 5(a) it is shown that the wave front

in hyperbolic model has not yet arrived at a point

7/=0.4 during the time interval chosen in this

figure since the wave propagates with a finite

speed and the heat propagation speed in axial

direction is decreasing with a small value of E..

The hyperbolic temperature distributions show

that the arrival time of the wave front at a given

axial location, for instance, Tj =0.4, is getting

shorter as the value of E. is increasing.

Finally, Figures. 6(a), 6(b) and 6(c) show the

profiles of the center temperature with dimension­

less time at selected points along the axis due to a

temporally square Gaussian pulse, which was

activated for a period L1~=0.2. Again, the hyper­

bolic model predicts a thermal wave with a finite

speed whereas the parabolic model shows no

wave nature. The hyperbolic temperature profile

displays a localized severe temperature rise for the

period L1~=0.2 and then the temperature drops

rapidly. Also, in Fig. 6(a) the thermal wave front

has not yet arrived at a point Tj =04. This fact can

be explained by referring to the arguments previ­

ously discussed in Fig. 5(a). A comparison of the

height of the wave front at Tj =0 with the one at

Tj == 0.4 shows that the height of the thermal wave

front is diminished along the axis smce the ther­

mal wave dissipates its energy hy travelir.g

through the medium. The effects of the value of E.

,
\.5

12

s'" 0.7

Hyperbolic
Parabolic

p = 00

E = 1.0

\.0

Hyperbolic
Parabolic

p = 0.0

E = 0.\

0.5

0.7

12

12

Hyperbolic
Parabolic

p= 0.0

E = \0.0

0.5 \.0 l.fl

(c)

1

Variation of center temperature with the
axial distance Tj for a pulsed surface heat
flux of Gaussian shape and 10=0.1
Variation of center temperature with the
axial distance Tj for a pulsed surface heat
flux of Gaussian shape and 10= 1.0
Variation of center temperature with the
axial distance Tj for a pulsed surface heat
flux of Gaussian shape and 10= 10.0

UO +-.-.. --_ --. _..,.~---L,- __~_-,-__ ..L, _

0.0

U6

I 0.7
Q2J-- - __

OJ! ,------.- .-..----- ------

(bi

(UJ6(j

L070

~

(a)

20
~ ~ 0.7

;;:r 15

'"a:
iii

IJl

Il5

'"ci. 0.4
iii

;;:r 0050

'"a:
iii llO4O

Oroo

O.lJ2()

0.0

Fig. 4 (a)

(b)

(c)



164 Woo Seung Kim and Kwan Soo Lee

11 =0.0

1.00.80.60.40.20.0

4 -- -- -------------~

11°00 (al I

HyperbolIC
Parabolic

p ~ aa
E ~ a I

/1, I

1\ I
1',,0:_____ I

'-----~~~~J
0.4 ,---,·---1

0.8 1.0

Hyperbolic
Parabolic

p ~ 0.0

E ~ 0.1

0.60.4

0.0 /

0.2

/

/

/

/

I

I

I

0.0 +--~~---F-~F-'~--,-----,------,---­0.0

2JJ

4.0

2JJ -,--------------- ----,

1.0

0.8 1.0

Hyperbolic
Parabolic

p~ 0.0

E ~ 1.0

Hyperbolic
Parabolic

0.8

p ~ 0.0

E ~ 10.0

0.6

0.6

(bl

(e)

0.4

0.4

TJ =0.0

,----
11 =0.0

04

12

;;;.08

1.00.8

- Hyperbolic
Parabolic

p ~ 0.0

E ~ 10.0

0.60.4

0.4

0.4

0.0 ...-

p ~ 0.0

E ~ 1.0

Hyperbolic (bl
Parabolic T\ -o:c 0.0

0.2

/

/

/

I I

I /
I;

,/ 0.0

01

~ / J"' I
/ I I

GO +I-",-~-,~--tl-~-'-~'--~_I
0.0 0.2 0.4 0.6 0.8 1.0

1.5

00 +---'----,--.----r--,--,------,-------j
0.0

°0561~------(el
11 "'0.0

04 ~ 0.4

Fig. 5 (a) Variation of center temperature with the

time r for a continuous surface heat flux

of Gaussian shape and E=O.1

(b) Variation of center temperature with the

time r for a continuous surface heat flux
of Gaussian shape and E= 1.0

(c) Variation of center temperature with the
time r for a continuous surface heat flux
of Gaussian shape and E= 10.0

~

Fig. 6 (a) Variation of center temperature with the
time r for a pulsed surface heat flux of

Gaussian shape and E=O.I
(b) Variation of center temperature with the

time r for a pulsed surface heat flux of
Gaussian shape and E= 1.0

(c) Variation of center temperature with the
time ~ for a pulsed surface heat flux of
Gaussian shape and E= 10.0
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on the temperature profiles for both models are
similar to those in Figs. 5(a), 5(b) and 5(c). The

parabolic temperature distributions at 7;=,=0 gen­
erally display a smooth increase for the pulse

activation period and then a relatively rapid
decrease.

5. Conclusion

The transient temperature distribution in an
orthotropic, semi-infinite medium due to axisym­
metric heat source at the boundary surface has

been determined with a hyperbolic heat conduc­

tion model. Several different types of applied

surfac~: sources are considered. The results show
that the localized temperature rise in the case of a

pulsed source becomes more drastic with decreas­
ing value of E compared with the care of an

isotropic medium of E= I. It is shown that the
temperature distribution In an orthotropic
medium depends on the value of the conductivity

ratio and the profile behaves unlike the case in an
isotropic medium. The predictions based on an

isotropic medium may lead to an erroneous result
when the medium behaves like an orthotropic

medium.
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Appendix

Fourier Heat Conduction Solutions
They are listed here for the convenience of
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comparison with their non-Fourier counterparts
discussed in the body of the paper.

Continuous Mixed Source

where

(AI)

(A2)

(A3)

Continuous Gaussian Source-Set A = I in Eq.
(AI)

Continuous Doughnut Source-Set A =0 in Eq.
(AI)

Single Pulse Mixed Source

_ fT{ r- , ,d~'B(p, Tj, ~)-VffE )_'~o[AG.J(p, 71, ~)+(l-A)G4(P' 71, ~)]x ff(l+2Ji~')

r-- d., ,df- ).,~o [AG.J(p, 71, ~)+(l-A)Gip, Tj, O]x ff(l+2Ji~')

Single Pulse Gaussian Source-Set A = I in Eq. (A4)
Single Pulse Doughnut Source-Set A=O in Eq. (A4)

(A4)


